Instability in a generalized Keller-Segel model.

نویسندگان

  • Patrick De Leenheer
  • Jay Gopalakrishnan
  • Erica Zuhr
چکیده

We present a generalized Keller-Segel model where an arbitrary number of chemical compounds react, some of which are produced by a species, and one of which is a chemoattractant for the species. To investigate the stability of homogeneous stationary states of this generalized model, we consider the eigenvalues of a linearized system. We are able to reduce this infinite dimensional eigenproblem to a parametrized finite dimensional eigenproblem. By matrix theoretic tools, we then provide easily verifiable sufficient conditions for destabilizing the homogeneous stationary states. In particular, one of the sufficient conditions is that the chemotactic feedback is sufficiently strong. Although this mechanism was already known to exist in the original Keller-Segel model, here we show that it is more generally applicable by significantly enlarging the class of models exhibiting this instability phenomenon which may lead to pattern formation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pattern Formation (i): the Keller-segel Model

Abstract. We investigate nonlinear dynamics near an unstable constant equilibrium in the classical Keller-Segel model. Given any general perturbation of magnitude δ, we prove that its nonlinear evolution is dominated by the corresponding linear dynamics along a fixed finite number of fastest growing modes, over a time period of ln 1 δ . Our result can be interpreted as a rigourous mathematical ...

متن کامل

Blow up of solutions to generalized Keller–Segel model

The existence and nonexistence of global in time solutions is studied for a class of equations generalizing the chemotaxis model of Keller and Segel. These equations involve Lévy diffusion operators and general potential type nonlinear terms.

متن کامل

Generalized Keller-Segel models of chemotaxis. Analogy with nonlinear mean field Fokker-Planck equations

We consider a generalized class of Keller-Segel models describing the chemo-taxis of biological populations (bacteria, amoebae, endothelial cells, social insects ,...). We show the analogy with nonlinear mean field Fokker-Planck equations and generalized thermodynamics. As an illustration, we introduce a new model of chemotaxis incorporating both effects of anomalous diffusion and exclusion pri...

متن کامل

Nonnegativity of exact and numerical solutions of some chemotactic models

We investigate nonnegativity of exact and numerical solutions to a generalized Keller– Segel model. This model includes the so-called ‘‘minimal’’ Keller–Segel model, but can cover more general chemistry. We use maximum principles and invariant sets to prove that all components of the solution of the generalized model are nonnegative. We then derive numerical methods, using finite element techni...

متن کامل

Jeans type instability for a chemotactic model of cellular aggregation

We consider an inertial model of chemotactic aggregation generalizing the Keller-Segel model and we study the linear dynamical stability of an infinite and homogeneous distribution of cells (bacteria, amoebae, endothelial cells,...) when inertial effects are accounted for. These inertial terms model cells directional persistance. We determine the condition of instability and the growth rate of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of biological dynamics

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2012